Analisis Sentimen Ulasan Aplikasi HeyJapan di Google Play Store Menggunakan Algoritma NLP

Authors

  • Jasmine Aulia Mumtaz IPB University
  • Kinaya Khairunnisa Komariansyah IPB University
  • Wildan Holik IPB University
  • Muhammad Galuh Gumelar IPB University
  • Reza Pratama IPB University
  • Humannisa Rubina Lestari IPB University

DOI:

https://doi.org/10.61132/pragmatik.v3i3.1801

Keywords:

Sentiment Analysis, HeyJapan, Natural Language Processing, TextBlob, Logistic Regression

Abstract

Digital learning applications like HeyJapan are increasingly popular. User reviews on platforms such as Google Play Store contain valuable information on user perceptions and experiences. To process this information systematically, this study employs a Natural Language Processing (NLP) approach to analyze sentiment toward the HeyJapan application. Data was collected using web scraping techniques with Python and the google play scraper library, resulting in 1,000 latest user reviews. The analysis included data collection, preprocessing, sentiment labeling using TextBlob, visualization, modeling with Logistic Regression, and evaluation. After preprocessing, 923 valid reviews were classified into three sentiment categories based on polarity which are positive, neutral, and negative. Results showed 71.4% of reviews positive, 26.1% neutral, and 2.5% negative. Visualizations in pie charts and word clouds provided an overview of user perceptions. Modeling with TF-IDF and Logistic Regression achieved 88% accuracy with the highest f1-score in the positive sentiment category. Evaluation indicates the model is fairly reliable in classifying sentiments, especially for positive and neutral categories, though negative sentiment classification needs improvement. This study shows the NLP approach can evaluate user perceptions of educational applications based on reviews and serve as a basis for improving foreign language learning app quality.

Downloads

Download data is not yet available.

References

Amiroh, & Afifah, L. (2021). Quizizz sebagai media pembelajaran untuk melatih keterampilan membaca bahasa Jerman. BRILIANT: Jurnal Riset dan Konseptual, 6(2), 241–249. http://dx.doi.org/10.28926/briliant.v3i4.566

Bator, R. J., Bryan, A. D., & Schultz, P. W. (2011). Who gives a hoot?: Intercept surveys of litterers and disposers. Environment and Behavior, 43(3), 295–315. https://doi.org/10.1177/0013916509356884

Citra, C. A., & Rosy, B. (2020). Keefektifan penggunaan media pembelajaran berbasis game edukasi Quizizz terhadap hasil belajar teknologi perkantoran siswa kelas X SMK Ketintang Surabaya. Jurnal Pendidikan Administrasi Perkantoran (JPAP), 8(2), 261–272. https://doi.org/10.26740/jpap.v8n2.p261-272

Dewi, S., Bakti, R. Y., & Wahyuni, T. (2024). Analisis sentimen aplikasi WhatsApp berdasarkan ulasan di PlayStore berbasis Natural Languange Processing. Arus Jurnal Sains Da, 2(2), 400–406. https://doi.org/10.57250/ajst.v2i2.656

Hasanah, U., Basri, M. S., & Budiani, D. (2025). Efektivitas penggunaan aplikasi Kahoot! sebagai strategi dalam meningkatkan kosakata bahasa Jepang siswa kelas XI SMA Negeri 1 Dayun. J-CEKI: Jurnal Cendekia Ilmiah, 4(2), 1851–1862. https://doi.org/10.56799/jceki.v4i2.7328

Hidayati, S. N. (2016). Pengaruh pendekatan keras dan lunak pemimpin organisasi terhadap kepuasan kerja dan potensi mogok kerja karyawan. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(2), 57–66. http://dx.doi.org/10.30588/SOSHUMDIK.v5i2.164

Kartika, D., Syahrial, & Agusli, E. (2025). Pelatihan penggunaan aplikasi Likari untuk penunjang belajar kosa kata bahasa Jepang bagi pelajar di SMA Negeri 7 Padang. Jurnal Implementasi Riset, 5(1), 41–49.

Kusmadaru, Y. E. (2024). Pengembangan game edukasi bahasa Jepang berbasis permainan tebak kata untuk meningkatkan penguasaan kosakata dengan metode Game Development Life Cycle (GDLC). Jurnal Mahasiswa Teknik Informatika, 3(1), 158–166. https://doi.org/10.35473/jamastika.v3i1.2962

Mahawardana, P. P. O., Sasmita, G. A., & Pratama, I. P. A. E. (2022). Analisis sentimen berdasarkan opini dari media sosial Twitter terhadap “figure pemimpin” menggunakan Python. JITTER: Jurnal Ilmiah Teknologi dan Komputer, 3(1), 810–820. https://doi.org/10.24843/JTRTI.2022.v03.i01.p17

Majid, A., Nugraha, D., & Adhinata, F. D. (2023). Sentiment analysis on TikTok application reviews using natural language processing approach. Journal of Embedded Systems, Security and Intelligent Systems, 4(1), 32–38. https://doi.org/10.59562/jessi.v4i1.471

Nurwanda, N., Suarna, N., & Prihartono, W. (2024). Penerapan NLP (Natural Language Processing) dalam analisis sentimen pengguna Telegram di PlayStore. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1841–1846. https://doi.org/10.36040/jati.v8i2.8469

Pawestri, R. A., & Saragih, F. A. (2021). Pengaruh metode drill menggunakan Quizizz terhadap peningkatan kemampuan menghafal huruf Hiragana siswa kelas X SMA Negeri 1 Batu. Paramasastra, 8(2), 95–110. https://doi.org/10.26740/paramasastra.v8n2.p95-110

Permana, R. M., Dewanty, V. L., & Sugihartono. (2024). Aplikasi Hey Japan: Learn Japanese dalam pembelajaran tata bahasa Jepang tingkat dasar. Jurnal Pendidikan Bahasa Jepang Undiksha, 10(1), 66–72. https://doi.org/10.23887/jpbj.v10i1.68706

Permana, S. A., Musril, H. A., Derta, S., & Okra, R. (2024). Perancangan media evaluasi pembelajaran berbasis game menggunakan Quizwhizzer. Intellect: Indonesian Journal of Learning and Technological Innovation, 3(2), 132–141.

Rahayu, P., Marmoah, S., & Budiharto, T. (2024). Analisis penerapan prinsip Mayer pada multimedia digital dalam pembelajaran matematika di kelas IV sekolah dasar. Jurnal Didaktika Dwija Indria, 12(5), 353–361.

Risdwiyanto, A., & Kurniyati, Y. (2015). Strategi pemasaran perguruan tinggi swasta di Kabupaten Sleman Yogyakarta berbasis rangsangan pemasaran. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(1), 1–23. http://dx.doi.org/10.30588/SOSHUMDIK.v5i1.142

Rivaldi, R. C., & Wismarini, T. D. (2024). Analisis sentimen pada ulasan produk dengan metode Natural Language Processing (NLP) (Studi kasus Zalika Store 88 Shopee). JURNAL ILMIAH ELEKTRONIKA DAN KOMPUTER, 17(1), 120–128. https://doi.org/10.51903/elkom.v17i1.1680

Sari, R. K., & Nurani, S. (2021). Quizizz atau Kahoot, gamifikasi dalam pembelajaran bahasa Inggris. Jurnal Pendidikan dan Kebudayaan (JURDIKBUD), 1(3), 78–86. https://doi.org/10.55606/jurdikbud.v1i3.87

Septipani, P. C., & Wijayanti, A. A. R. (2024). Pengaruh media Quizizz terhadap penguasaan Kanji pada siswa di LKP Tsunagari Indonesia Japan. Stilistika: Jurnal Pendidikan Bahasa dan Seni, 13(1), 34–42. https://doi.org/10.59672/stilistika.v13i1.4098

Upadana, I. W. A. (2021). Game interaktif pada pembelajaran bahasa Bali di SMA Negeri 3 Amlapura. Subasita: Jurnal Sastra Agama dan Pendidikan Bahasa Bali, 2(2), 74–82.

Utama, A. P. R., Wirdayanti, Syahrullah, & Kasim, A. A. (2024). Analisis sentimen aplikasi Inarisk Personal di Google Play Store menggunakan algoritma NLP. The Indonesian Journal of Computer Science, 13(3), 4923–4931. https://doi.org/10.33022/ijcs.v13i3.4021

Downloads

Published

2025-06-03

How to Cite

Jasmine Aulia Mumtaz, Kinaya Khairunnisa Komariansyah, Wildan Holik, Muhammad Galuh Gumelar, Reza Pratama, & Humannisa Rubina Lestari. (2025). Analisis Sentimen Ulasan Aplikasi HeyJapan di Google Play Store Menggunakan Algoritma NLP. Pragmatik : Jurnal Rumpun Ilmu Bahasa Dan Pendidikan , 3(3), 157–167. https://doi.org/10.61132/pragmatik.v3i3.1801

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.